Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Extreme Medicine ; - (2):19-25, 2021.
Article in English | EMBASE | ID: covidwho-2324329

ABSTRACT

The development of coronavirus infection outbreak into a pandemic, coupled with the lack of effective COVID-19 therapies, is a challenge for the entire pharmaceutical industry. This study aimed to assess the treatment and preventive efficacy of the amino acid-peptide complex (APC) in male Syrian hamsters infected with SARSCoV-2 (intranasal administration of 26 mul of the virus culture, titer of 4 x 104 TCD50/ml). In a modeled COVID-19 case, APC administered for treatment and preventive purposes reduced lung damage. Compared to the positive control group, test group had the lung weight factor 15.2% smaller (trend), which indicates a less pronounced edema. Microscopic examination revealed no alveolar edema, atypical hypertrophied forms of type II alveolocytes, pulmonary parenchyma fibrinization. The macrophage reaction intensified, which is probably a result of the APC-induced activation of regenerative processes in the lung tissues. Spleens of the animals that received APC for therapeutic and preventive purposes were less engorged and had fewer hemorrhages. The decrease of body weight of the test animals that received APC for treatment and prevention was insignificant (p < 0.05), which indicates a less severe course of COVID-19. Administered following a purely therapeutic protocol, APC proved ineffective against SARS-CoV-2 post-infection. Thus, APC-based drug used as a therapeutic and preventive agent reduces pulmonary edema and makes morphological signs of lung tissue damage less pronounced in male Syrian hamsters infected with SARS-CoV-2.Copyright © Extreme Medicine.All right reserved.

2.
J Infect Dis ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-2319602

ABSTRACT

BACKGROUND: The epidemiological advantage of Omicron variant is evidenced by its rapid spread and the ability to outcompete prior variants. Among Omicron sub-lineages, early outbreaks were dominated by BA.1 while BA.2 has gained dominance since February 2022. The relative pathogenicity and transmissibility of BA.1 and BA.2 have not been fully defined. METHODS: We compared viral loads and clinical signs in Syrian hamsters after infection with BA.1, BA.2, or D614G variant. A competitive transmission model and next generation sequencing were used to compare the relative transmission potential of BA.1 and BA.2. RESULTS: BA.1 and BA.2 caused no apparent clinical signs while D614G caused more than 10% weight loss. Higher viral loads were detected from the nasal washes, nasal turbinate and lungs of BA.1 than BA.2 inoculated hamsters. No aerosol transmission was observed for BA.1 or BA.2 under the experimental condition that D614G transmitted efficiently. BA.1 and BA.2 were able to transmit among hamsters via direct contact; however, BA.1 transmitted more efficiently than BA.2 under the competitive transmission model. No recombination was detected from direct contacts exposed simultaneously to BA.1 and BA.2. CONCLUSIONS: Omicron BA.1 and BA.2 demonstrated attenuated pathogenicity and reduced transmission potential in hamsters when compared to early SARS-CoV-2 strains.

3.
BIOpreparations ; Prevention, Diagnosis, Treatment. 22(4):414-434, 2022.
Article in Russian | EMBASE | ID: covidwho-2281215

ABSTRACT

Finding effective and safe medicines to fight SARS-CoV-2 infection is an urgent task. RPH-137 is an original trap fusion protein against SARS-CoV-2 virus. It comprises the angiotensin-converting enzyme type 2 extracellular domain and the human IgG1 Fc fragment. The aim of the study was to carry out a preclinical evaluation of the efficacy of RPH-137 and molnupiravir against SARS-CoV-2 infection. Material(s) and Method(s): the authors analysed RPH-137 expressed in a stable CHO cell line and molnupiravir used as an active pharmaceutical ingredient. Drug-mediated inhibition of virus-induced cytotoxicity was assessed in Vero cell culture. In vivo efficacy assessments were performed in Syrian hamsters. The animals were infected intranasally with SARS-CoV-2 (PIK35 clinical isolate) in the dose of 5 log TCID50. The authors evaluated body weight measurements, lung-body weight ratios, and lung histopathology findings and determined viral RNA levels in oropharyngeal swabs by RT-PCR using the amplification cycle threshold (Ct). The statistical analyses involved one- and two-way ANOVA, Student's t-test, and Mann-Whitney test. Result(s): RPH-137 and molnupiravir inhibited the cytopathic effect of SARS-CoV-2 in Vero cells;the EC50 values of RPH-137 amounted to 4.69 mug/mL (21.3 nM) and 16.24 mug/mL (73.8 nM) for 50 TCID50 and 200 TCID50, respectively, whereas the EC50 values of molnupiravir were 0.63 mug/mL (1900 nM) for both doses. Intramuscular RPH-137 (30 and 80 mg/kg) had no effect on the infection process in Syrian hamsters. The comparison with the challenge control group showed that intraperitoneal RPH-137 (100 mg/kg) had statistically significant effects on a number of parameters, including a 27% reduction in inflammation and a 30% reduction in the total lesion area of the lungs by Day 7. Intragastric molnupiravir (300 mg/kg twice daily) significantly inhibited SARS-CoV-2 infection. Conclusion(s): both RPH-137 and molnupiravir inhibited the cytopathic effect of SARS-CoV-2 in Vero cells. In Syrian hamsters, molnupiravir demonstrated a more pronounced inhibition of SARS-CoV-2 than RPH-137. However, RPH-137 had statistically significant effects on a range of parameters. This offers additional perspectives for further research.Copyright © 2023 Safety and Risk of Pharmacotherapy. All rights reserved.

4.
Curr Issues Mol Biol ; 45(1): 249-267, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2227746

ABSTRACT

At the end of 2019, an outbreak of a new severe acute respiratory syndrome caused by a coronavirus occurred in Wuhan, China, after which the virus spread around the world. Here, we have described the adaptive capacity and pathogenesis of the SARS-CoV-2 Delta variant, which is widespread in Armenia, in vitro and vivo on Syrian hamsters. We have studied the changes in the SARS-CoV-2genome using viral RNA sequencing during virus adaptation in vitro and in vivo. Our findings revealed that SARS-CoV-2 in Syrian hamsters causes a short-term pulmonary form of the disease, the first symptoms appear within 48 h after infection, reach 5-7 days after infection, and begin to disappear by 7-9 days after infection. The virus induces pathogenesis in the blood and bone marrow, which generally corresponds to the manifestation of the inflammatory process. The pulmonary form of the disease passes faster than changes in blood cells and bone marrow. Our data show that hamster organs do not undergo significant pathological changes in the Delta variant of SARS-CoV-2 infection.

5.
Front Cell Infect Microbiol ; 12: 979641, 2022.
Article in English | MEDLINE | ID: covidwho-2141709

ABSTRACT

We evaluated the immunogenicity and protective ability of a chimpanzee replication-deficient adenovirus vectored COVID-19 vaccine (BV-AdCoV-1) expressing a stabilized pre-fusion SARS-CoV-2 spike glycoprotein in golden Syrian hamsters. Intranasal administration of BV-AdCoV-1 elicited strong humoral and cellular immunity in the animals. Furthermore, vaccination prevented weight loss, reduced SARS-CoV-2 infectious virus titers in the lungs as well as lung pathology and provided protection against SARS-CoV-2 live challenge. In addition, there was no vaccine-induced enhanced disease nor immunopathological exacerbation in BV-AdCoV-1-vaccinated animals. Furthermore, the vaccine induced cross-neutralizing antibody responses against the ancestral strain and the B.1.617.2, Omicron(BA.1), Omicron(BA.2.75) and Omicron(BA.4/5) variants of concern. These results demonstrate that BV-AdCoV-1 is potentially a promising candidate vaccine to prevent SARS-CoV-2 infection, and to curtail pandemic spread in humans.


Subject(s)
COVID-19 , Viral Vaccines , Cricetinae , Animals , Humans , Mesocricetus , Administration, Intranasal , Pan troglodytes , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , SARS-CoV-2/genetics , Adenoviridae/genetics
6.
Virol Sin ; 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2050059

ABSTRACT

During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 PFU of Delta630, whereas no deaths occurred even after infection with 105 PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.

7.
J Virol ; 96(18): e0103422, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2019727

ABSTRACT

The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/virology , Cricetinae , Feces/virology , Genomics , Humans , Mesocricetus , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Shedding
8.
EBioMedicine ; 79: 103997, 2022 May.
Article in English | MEDLINE | ID: covidwho-1977198

ABSTRACT

BACKGROUND: SARS-CoV-2 Omicron variant is rampantly spreading across the globe. We assessed the pathogenicity and immune response generated by BA.1.1 sub-lineage of SARS-CoV-2 [Omicron (R346K) variant] in 5 to 6-week old Syrian hamsters and compared the observations with that of Delta variant infection. METHODS: Virus shedding, organ viral load, lung disease and immune response generated in hamsters were sequentially assessed. FINDINGS: The disease characteristics of the Omicron (R346K) variant were found to be similar to that of the Delta variant infection in hamsters like viral replication in the respiratory tract and interstitial pneumonia. The Omicron (R346K) infected hamsters demonstrated lesser body weight reduction and viral RNA load in the throat swab and nasal wash samples in comparison to the Delta variant infection. The viral load in the lungs and nasal turbinate samples and the lung disease severity of the Omicron (R346K) infected hamsters were found comparable with that of the Delta variant infected hamsters. Neutralizing antibody response against Omicron (R346K) variant was detected from day 5 and the cross-neutralization titre of the sera against other variants showed severe reduction ie., 7 fold reduction against Alpha and no titers against B.1, Beta and Delta. INTERPRETATION: This preliminary data shows that Omicron (R346K) variant infection can produce moderate to severe lung disease similar to that of the Delta variant and the neutralizing antibodies produced in response to Omicron (R346K) variant infection shows poor neutralizing ability against other co-circulating SARS-CoV-2 variants like Delta which necessitates caution as it may lead to increased cases of reinfection. FUNDING: This study was supported by Indian Council of Medical Research as an intramural grant (COVID-19) to ICMR-National Institute of Virology, Pune.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Cricetinae , Humans , India , Mesocricetus , Virulence
9.
Viruses ; 14(8)2022 07 23.
Article in English | MEDLINE | ID: covidwho-1957457

ABSTRACT

Reinfection risk is a great concern with regard to the COVID-19 pandemic because a large proportion of the population has recovered from an initial infection, and previous reports found that primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques without viral presence and pathological injury; however, a high possibility for reinfection at the current stage of the pandemic has been proven. We found the reinfection of SARS-CoV-2 in Syrian hamsters with continuous viral shedding in the upper respiratory tracts and few injuries in the lung, and nasal mucosa was exploited by SARS-CoV-2 for replication and shedding during reinfection; meanwhile, no viral replication or enhanced damage was observed in the lower respiratory tracts. Consistent with the mild phenotype in the reinfection, increases in mRNA levels in cytokines and chemokines in the nasal mucosa but only slight increases in the lung were found. Notably, the high levels of neutralizing antibodies in serum could not prevent reinfection in hamsters but may play roles in benefitting the lung recovery and symptom relief of COVID-19. In summary, Syrian hamsters could be reinfected by SARS-CoV-2 with mild symptoms but with obvious viral shedding and replication, and both convalescent and vaccinated patients should be wary of the transmission and reinfection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Macaca mulatta , Mesocricetus , Nasal Mucosa , Pandemics , Reinfection
10.
Vaccines (Basel) ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1939063

ABSTRACT

The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.

11.
J Immunol Methods ; 505: 113275, 2022 06.
Article in English | MEDLINE | ID: covidwho-1796490

ABSTRACT

Golden Syrian hamsters are increasingly used as a permissive animal model for SARS-CoV-2 virus studies, but the lack of immunological assays and other immunological reagents for hamsters limits its full potential. Herein, we developed an ELISA method to detect antibodies specific to peptides and proteins derived from SARS-CoV-2 virus in immunized golden Syrian hamsters. Under optimized conditions, this assay quantitates antibodies specific for individual viral peptides, peptide pools, and proteins. Hence, this ELISA method allows investigators to quantitatively assess humoral immune responses at the peptide and protein levels and has potential application in the development of peptide-based vaccines to be tested in hamsters.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Cricetinae , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Mesocricetus , Peptides
12.
National Technical Information Service; 2021.
Non-conventional in English | National Technical Information Service | ID: grc-753722

ABSTRACT

A worldwide effort to counter the COVID-19 pandemic has resulted in hundreds of candidate vaccines moving through various stages of research and development, including several vaccines in phase 1, 2 and 3 clinical trials. A relatively small number of these vaccines have been evaluated in SARS-CoV-2 disease models, and fewer in a severe disease model. Here, a SARS-CoV-2 DNA targeting the spike protein and delivered by jet injection, nCoV-S(JET), elicited neutralizing antibodies in hamsters and was protective in both wild-type and transiently immunosuppressed hamster models. This study highlights the DNA vaccine, nCoV-S(JET), we developed has a great potential to move to next stage of preclinical studies, and it also demonstrates that the transiently immunosuppressed Syrian hamsters, which recapitulate severe and prolonged COVID-19 disease, can be used for preclinical evaluation of the protective efficacy of spike-based COVID-19 vaccines.

13.
Viruses ; 14(3)2022 03 13.
Article in English | MEDLINE | ID: covidwho-1742725

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Delta variant has evolved to become the dominant SARS-CoV-2 lineage with multiple sub-lineages and there are also reports of re-infections caused by this variant. We studied the disease characteristics induced by the Delta AY.1 variant and compared it with the Delta and B.1 variants in Syrian hamsters. We also assessed the potential of re-infection by these variants in Coronavirus disease 2019 recovered hamsters 3 months after initial infection. The variants produced disease characterized by high viral load in the respiratory tract and interstitial pneumonia. The Delta AY.1 variant produced mild disease in the hamster model and did not show any evidence of neutralization resistance due to the presence of the K417N mutation, as speculated. Re-infection with a high virus dose of the Delta and B.1 variants 3 months after B.1 variant infection resulted in reduced virus shedding, disease severity and increased neutralizing antibody levels in the re-infected hamsters. The reduction in viral load and lung disease after re-infection with the Delta AY.1 variant was not marked. Upper respiratory tract viral RNA loads remained similar after re-infection in all the groups. The present findings show that prior infection could not produce sterilizing immunity but that it can broaden the neutralizing response and reduce disease severity in case of reinfection.


Subject(s)
COVID-19 , Reinfection , Animals , Cricetinae , Mesocricetus , SARS-CoV-2/genetics , Severity of Illness Index , Trachea
14.
Biology (Basel) ; 10(12)2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1591730

ABSTRACT

Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models. Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV animal model has yet to be developed. This review summarizes the available animal models of HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal species. We also elaborate on rodent HAdV animal models and how they contributed to insights into adenovirus-induced cell transformation and cancer.

15.
Italian Journal of Gender-Specific Medicine ; 7(3):175-176, 2021.
Article in English | Scopus | ID: covidwho-1566585
16.
Front Microbiol ; 12: 720437, 2021.
Article in English | MEDLINE | ID: covidwho-1468350

ABSTRACT

In March 2020, the first cases of the human coronavirus disease COVID-19 were registered in Kazakhstan. We isolated the SARS-CoV-2 virus from clinical materials from some of these patients. Subsequently, a whole virion inactivated candidate vaccine, QazCovid-in, was developed based on this virus. To develop the vaccine, a virus grown in Vero cell culture was used, which was inactivated with formaldehyde, purified, concentrated, sterilized by filtration, and then adsorbed on aluminum hydroxide gel particles. The formula virus and adjuvant in buffer saline solution were used as the vaccine. The safety and protective effectiveness of the developed vaccine were studied in Syrian hamsters. The results of the studies showed the absolute safety of the candidate vaccine in the Syrian hamsters. When studying the protective effectiveness, the developed vaccine with an immunizing dose of 5 µg/dose specific antigen protected animals from a wild homologous virus at a dose of 104.5 TCID50 /mL. The candidate vaccine induced the formation of virus-neutralizing antibodies in vaccinated hamsters at titers of 3.3 ± 1.45 log2 to 7.25 ± 0.78 log2, and these antibodies were retained for 6 months (observation period) for the indicated titers. No viral replication was detected in vaccinated hamsters, protected against the development of acute pneumonia, and ensured 100% survival of the animals. Further, no replicative virus was isolated from the lungs of vaccinated animals. However, a virulent virus was isolated from the lungs of unvaccinated animals at relatively high titers, reaching 4.5 ± 0.7 log TCID50/mL. After challenge infection, 100% of unvaccinated hamsters showed clinical symptoms (stress state, passivity, tousled coat, decreased body temperature, and body weight, and the development of acute pneumonia), with 25 ± 5% dying. These findings pave the way for testing the candidate vaccine in clinical human trials.

17.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1276013

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
18.
Front Microbiol ; 11: 618891, 2020.
Article in English | MEDLINE | ID: covidwho-1054989

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the world and impacted global healthcare systems. For clinical patients, COVID-19 not only induces pulmonary lesions but also affects extrapulmonary organs. An ideal animal model that mimics COVID-19 in humans in terms of the induced systematic lesions is urgently needed. Here, we report that Syrian hamster is highly permissive to SARS-CoV-2 and exhibit diffuse alveolar damage and induced extrapulmonary multi-organs damage, including spleen, lymph nodes, different segments of alimentary tract, kidney, adrenal gland, ovary, vesicular gland and prostate damage, at 3-7 days post inoculation (dpi), based on qRT-PCR, in situ hybridization and immunohistochemistry detection. Notably, the adrenal gland is a novel target organ, with abundant viral RNA and antigen expression detected, accompanied by focal to diffuse inflammation. Additionally, viral RNA was also detected in the corpus luteum of the ovary, vesicular gland and prostate. Focal lesions in liver, gallbladder, myocardium, and lymph nodes were still present at 18 dpi, suggesting potential damage after disease. Our findings illustrate systemic histological observations and the viral RNA and antigen distribution in infected hamsters during disease and convalescence to recapitulate those observed in humans with COVID-19, providing helpful data to the pathophysiologic characterization of SARS-CoV-2-induced systemic disease and the development of effective treatment strategies.

19.
Virology ; 556: 96-100, 2021 04.
Article in English | MEDLINE | ID: covidwho-1046110

ABSTRACT

Dynamic tracking of variant frequencies among viruses circulating in the global pandemic has revealed the emergence and dominance of a D614G mutation in the SARS-CoV-2 spike protein. To address whether pandemic SARS-CoV-2 G614 variant has evolved to become more pathogenic, we infected adult hamsters (>10 months old) with two natural SARS-CoV-2 variants carrying either D614 or G614 spike protein to mimic infection of the adult/elderly human population. Hamsters infected by the two variants exhibited comparable viral loads and pathology in lung tissues as well as similar amounts of virus shed in nasal washes. Altogether, our study does not find that naturally circulating D614 and G614 SARS-CoV-2 variants differ significantly in pathogenicity in hamsters.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/blood , COVID-19/pathology , Chlorocebus aethiops , Disease Models, Animal , Female , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Load , Weight Loss
20.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Article in English | MEDLINE | ID: covidwho-611003

ABSTRACT

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Cricetinae , Humans , Immunization, Passive , Lung/diagnostic imaging , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/pathology , Ribonucleoproteins/chemistry , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Virus Replication , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL